image
VincentWei

天地间,浩然正气长存,为天地立心,为生民立命,为往圣继绝学,为万世开太平!

免责声明:网站内容仅供个人学习记录,禁做商业用途,转载请注明出处。

版权所有 © 2017-2020 NEUSNCP个人学习笔记 辽ICP备17017855号-2

猜猜这是什么神经网络结构?

VincentWei    2019年1月7日 20:56:51

image_size = 224
images = tf.Variable(tf.random_normal([batch_size,
                                       image_size,
                                       image_size, 3],
                                       dtype=tf.float32,
                                       stddev=1e-1))
parameters = []

# conv1
with tf.name_scope('conv1') as scope:
    kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64], dtype=tf.float32,
                                             stddev=1e-1), name='weights')
    conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME')
    biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
                         trainable=True, name='biases')
    bias = tf.nn.bias_add(conv, biases)
    conv1 = tf.nn.relu(bias, name=scope)
    print_activations(conv1)
    parameters += [kernel, biases]


# pool1
lrn1 = tf.nn.lrn(conv1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='lrn1')
pool1 = tf.nn.max_pool(lrn1,
                       ksize=[1, 3, 3, 1],
                       strides=[1, 2, 2, 1],
                       padding='VALID',
                       name='pool1')
print_activations(pool1)

# conv2
with tf.name_scope('conv2') as scope:
    kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192], dtype=tf.float32,
                                             stddev=1e-1), name='weights')
    conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding='SAME')
    biases = tf.Variable(tf.constant(0.0, shape=[192], dtype=tf.float32),
                         trainable=True, name='biases')
    bias = tf.nn.bias_add(conv, biases)
    conv2 = tf.nn.relu(bias, name=scope)
    parameters += [kernel, biases]
print_activations(conv2)

# pool2
lrn2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='lrn2')
pool2 = tf.nn.max_pool(lrn2,
                       ksize=[1, 3, 3, 1],
                       strides=[1, 2, 2, 1],
                       padding='VALID',
                       name='pool2')
print_activations(pool2)

# conv3
with tf.name_scope('conv3') as scope:
    kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384],
                                             dtype=tf.float32,
                                             stddev=1e-1), name='weights')
    conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME')
    biases = tf.Variable(tf.constant(0.0, shape=[384], dtype=tf.float32),
                         trainable=True, name='biases')
    bias = tf.nn.bias_add(conv, biases)
    conv3 = tf.nn.relu(bias, name=scope)
    parameters += [kernel, biases]
    print_activations(conv3)

# conv4
with tf.name_scope('conv4') as scope:
    kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256],
                                             dtype=tf.float32,
                                             stddev=1e-1), name='weights')
    conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME')
    biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
                         trainable=True, name='biases')
    bias = tf.nn.bias_add(conv, biases)
    conv4 = tf.nn.relu(bias, name=scope)
    parameters += [kernel, biases]
    print_activations(conv4)

# conv5
with tf.name_scope('conv5') as scope:
    kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256],
                                             dtype=tf.float32,
                                             stddev=1e-1), name='weights')
    conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME')
    biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
                         trainable=True, name='biases')
    bias = tf.nn.bias_add(conv, biases)
    conv5 = tf.nn.relu(bias, name=scope)
    parameters += [kernel, biases]
    print_activations(conv5)

# pool5
pool5 = tf.nn.max_pool(conv5,
                       ksize=[1, 3, 3, 1],
                       strides=[1, 2, 2, 1],
                       padding='VALID',
                       name='pool5')
print(pool5 .op.name, ' ', pool5.get_shape().as_list())

 

浏览: 1.3K

[[total]] 条评论

添加评论
  1. [[item.time]]
    [[item.user.username]] [[item.floor]]楼
  2. 点击加载更多……
  3. 添加评论