image
VincentWei

天地间,浩然正气长存,为天地立心,为生民立命,为往圣继绝学,为万世开太平!

免责声明:网站内容仅供个人学习记录,禁做商业用途,转载请注明出处。

版权所有 © 2017-2020 NEUSNCP个人学习笔记 辽ICP备17017855号-2

Graph Neural Networks.zip


VincentWei


The field of graph neural networks (GNNs) has seen rapid and incredible strides over the recent years. Graph neural networks, also known as deep learning on graphs, graph representation learning, or geometric deep learning have become one of the fastest-growing research topics in machine learning, especially deep learning. This wave of research at the intersection of graph theory and deep learning has also influenced other fields of science, including recommendation systems, computer vision, natural language processing, inductive logic programming, program synthesis, software mining, automated planning, cybersecurity, and intelligent transportation.

Although graph neural networks have achieved remarkable attention, it still faces many challenges when applying them into other domains, from the theoretical understanding of methods to the scalability and interpretability in a real system, and from the soundness of the methodology to the empirical performance in an application. However, as the field rapidly grows, it has been extremely challenging to gain a global perspective of the developments of GNNs.

 

Therefore, we feel the urgency to bridge the above gap and have a comprehensive book on this fast-growing yet challenging topic, which can benefit a broad audience including advanced undergraduate and graduate students, postdoctoral researchers, lecturers, and industrial practitioners.

This book is intended to cover a broad range of topics in graph neural networks, from the foundations to the frontiers, and from the methodologies to the applications. Our book is dedicated to introducing the fundamental concepts and algorithms of GNNs, new research frontiers of GNNs, and broad and emerging applications with GNNs.

The Chinese version will be officially published around the middle of 2022.

浏览 349   最近更新: 2022年1月13日 17:30:35